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Variation of mass ratio with different structural
factors

number of stages given by e~cln — S = 0. The constant
Kc is added as a first linear correction for the horizontal
stretching of the knee introduced by an increasing c, with K
selected from observation to be 0.35 for typical cases.

It is concluded on the basis of the foregoing that the use of
structural factors as functions in optimization analyses intro-
duces the necessity of using either (1) a more definitive struc-
tural function when optimizing for minimum mass or (2) a
more definitive optimization procedure such as the one sug-
gested above based on the logarithmic nature of the equa-
tions. Because of the difficulties of the definitive specifica-
tion of a structural function, the latter alternative appears
preferable.
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On Transient Magnetohydrodynamic
Flow in Channels
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Fig. 1 Velocity profiles with magnetic Prandtl number

particularly when the magnetic Prandtl number is nearly
unity.

Taking z-axis along the channel, the governing equations
of one-dimensional unsteady flow are
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where P is the time-dependent axial pressure gradient. The
initial and boundary conditions are

t = 0: u = us(y), P = Ps = const, Ez = Es = const
t > 0; y = dbfc: u = 0, P = P^(t) + P., E, =

J?i(0 + Es (2)

where the subscript s denotes the steady state. E8 and EI
are unknown a priori, they must be found from the integra-
tion of current density,

0:: /_A ̂  dy = f_h (E* = 0 (3)

However, owing to the property of symmetry the instan-
taneous electric field at both walls y = ±h must be the same.
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IN a recent paper Yen and Chang1 have, using the Laplace
transform, studied the magnetohydrodynamic flow in a

channel of perfectly conducting walls with a transverse mag-
netic field and a sudden change of the axial pressure gradient.
It is the purpose of this note to investigate the flow in a chan-
nel of insulating walls by another method for any change in
the time-dependent axial pressure gradient, and also to point
out a feature not adequately discussed by Yen and Chang.
The velocity field and the induced electric (and magnetic)
field are of the oscillatory type with decaying amplitudes,
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Fig. 2 Time history of U = u/us (magnetic Prandtl
number = 1)
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Since the first two equations of Eqs. (1) are independent of
Bx, which can be found after u and Eg are determined, we
will only study the solutions of u and Ez. Similar to the
method used in a previous paper,2 we use Duhamel's theorem
for a system of coupled equations and find that the solutions
for any given pressure variation are
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Special Cases
/. Sudden Start

We consider the problem that the fluid is initially at rest
and is set in motion by a sudden application of a constant
axial pressure gradient. This readily implies that Ps = 0
and PI = const. Performing the integrations, we find
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As ^—>• oo ? we may recover the steady Hartmann problem.3
Also we may recover the solution in a nonmagnetic field by
letting M-+• 0.
2. Sudden Removal of the Pressure Gradient

A steady state is suddenly changed by the removal of the
pressure gradient. This states that PI = — Ps. The solu-
tions become

pv
(2« +

[Azn+i sin + Bzn+i cos#2n+ 1 T] cos
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——— - —— (9)
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To illustrate the oscillatory nature of the problem, we
present some numerical results of the case of sudden start
with magnetic Prandtl number \/v = 1. Figure 1 shows the
velocity profiles of different Hartmann numbers in dimen-
sionless velocity (pv/PJiz)u at the dimensionless time r =
vt/W = 0.1. Figure 2 gives the time history of the velocity
magnitudes at the center of the channel and that of the aver-
age velocity.
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The Use of Macauley's Brackets in the
Analysis of Laterally Loaded Struts and

Tie-Bars

S. A. URRY*
Brunei College, London, England

Nomenclature
a = x-coordinate locating lateral load
C},Cz = integration constants
El = flexural rigidity
k = (P/EIY/2

L = span
M = bending moment
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