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Fig. 2 Variation of mass ratio with different structural
factors

number of stages given by ¢~/» — § = 0. The constant
Kc is added as a first linear correction for the horizontal
stretching of the knee introduced by an increasing ¢, with K
selected from observation to be 0.35 for typical cases.

It is concluded on the basis of the foregoing that the use of
structural factors as functions in optimization analyses intro-
duces the necessity of using either (1) a more definitive strue-
tural function when optimizing for minimum mass or (2) a
more definitive optimization procedure such as the one sug-
gested above based on the logarithmic nature of the equa-
tions. Because of the difficulties of the definitive specifica-
tion of a structural function, the latter alternative appears
preferable.
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On Transient Magnetohydrodynamic
Flow in Channels

L. N. Tao*
Illinois Institute of Technology, Chicago, Il

N a recent paper Yen and Chang! have, using the Laplace
transform, studied the magnetohydrodynamic flow in a
channel of perfectly conducting walls with a transverse mag-
netic field and a sudden change of the axial pressure gradient.
It is the purpose of this note to investigate the flow in a chan-
nel of insulating walls by another method for any change in
the time-dependent axial pressure gradient, and also to point
out a feature not adequately discussed by Yen and Chang.
The velocity field and the induced electric (and magnetic)
field are of the oscillatory type with decaying amplitudes,
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Fig. 1 Velocity profiles with magnetic Prandtl number
= 1, (ov/Pih®u vs £&(= y/h)

particularly when the magnetic Prandtl number is nearly
unity.

Taking z-axis along the channel, the governing equations
of one-dimensional unsteady flow are
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where P is the time-dependent axial pressure gradient. The
initial and boundary conditions are

t=0: u=uy), P=P,=const, E, = E,
t>0;,y = *h: v=0,P =P + P, E,

E@ + E (2
where the subscript s denotes the steady state. E, and E;

are unknown a priori, they must be found from the integra-
tion of current density,
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However, owing to the property of symmetry the instan-
taneous electric field at both walls y = =h must be the same.
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Fig. 2 Time history of U = u/u; (inagnetic Prandtl
number = 1)
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Since the first two equations of Egs. (1) are independent of
B, which can be found after u and E, are determined, we
will only study the solutions of w and E,. Similar to the
method used in a previous paper,? we use Duhamel’s theorem
for a system of coupled equations and find that the solutions
for any given pressure variation are
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Special Cases
1. Sudden Start

We consider the problem that the fluid is initially at rest
and is set in motion by a sudden application of a constant
axial pressure gradient. This readily implies that P, = 0
and P; = const. Performing the integrations, we find
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As t — <, we may recover the steady Hartmann problem.3
Also we may recover the solution in a nonmagnetic field by
letting M — 0.

2. Sudden Removal of the Pressure Gradient

A steady state is suddenly changed by the removal of the
pressure gradient. This states that P, = —P,. The solu-
tions become
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To illustrate the oscillatory nature of the problem, we
present some numerical results of the case of sudden start
with magnetic Prandtl number A/v = 1. Figure 1 shows the
velocity profiles of different Hartmann numbers in dimen-
sionless velocity (pr/Pih*)u at the dimensionless time 7 =
vt/h? = 0.1. TFigure 2 gives the time history of the velocity
magnitudes at the center of the channel and that of the aver-
age velocity.
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The Use of Macauley’s Brackets in the
Analysis of Laterally Loaded Struts and

Tie-Bars
S. A. Urry*
Brunel College, London, England

Nomenclature
a = x-coordinate locating lateral load
C,,C: = integration constants
EI = flexural rigidity
k = (P/ED)V/?
L = span
M = bending moment
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